

3	(i)	$\mathrm{d} F / \mathrm{d} v=-25 v^{-2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{d} / \mathrm{d} v\left(v^{-1}\right)=-v^{-2} \text { soi } \\ & -25 v^{-2} \text { o.e mark final ans } \end{aligned}$	
	(ii)	$\begin{aligned} & \text { When } v=50, \mathrm{~d} F / \mathrm{d} v=-25 / 50^{2}(=-0.01) \\ & \frac{\mathrm{d} F}{\mathrm{~d} t}=\frac{\mathrm{d} F}{\mathrm{~d} v} \cdot \frac{\mathrm{~d} v}{\mathrm{~d} t} \\ & =-0.01 \times 1.5=-0.015 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1cao } \\ \text { [3] } \\ \hline \end{gathered}$	$-25 / 50^{2}$ o. $\text { o.e. e.g. }-3 / 200 \text { isw }$	$\text { e.g. } \frac{\mathrm{d} F}{\mathrm{~d} v}=\frac{\mathrm{d} F}{\mathrm{~d} t} / \frac{\mathrm{d} v}{\mathrm{~d} t}$

4		$\begin{aligned} & V=\pi h^{2} \Rightarrow \mathrm{~d} V / \mathrm{d} h=2 \pi h \Rightarrow \\ & \mathrm{~d} V / \mathrm{d} t=\mathrm{d} V / \mathrm{d} h \times \mathrm{d} h / \mathrm{d} t \\ & \mathrm{~d} V / \mathrm{d} t=10 \\ & \mathrm{~d} h / \mathrm{d} t=10 /(2 \pi \times 5)=1 / \pi \end{aligned}$	M1A1 M1 B1 A1 [5]	if derivative $2 \pi h$ seen without $\mathrm{d} V / \mathrm{d} h=\ldots$ allow M1A0 soi ; o.e. - any correct statement of the chain rule using V, h and t - condone use of a letter other than t for time here soi; if a letter other than t used (and not defined) B0 or 0.32 or better, mark final answer

$\text { 5(i) } \left.\begin{array}{rl} \mathrm{d}(\sin x \\ \mathrm{d} x-\overline{\cos x}) \end{array}=\frac{\cos x \cdot \cos x-\sin x \cdot(-\sin x)}{\cos ^{2} x}\right) ~=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x} *$	M1 A1 A1 [3]	Quotient (or product) rule (AG)	product rule: $\frac{1}{\cos x} \cdot \cos x+\sin x\left(-\frac{1}{\cos ^{2} x}\right)(-\sin x)$ but must show evidence of using chain rule on $1 / \cos x(\operatorname{or} \mathrm{~d} / \mathrm{d} x(\sec x)=\sec x \tan x$ used $)$
$\text { (ii) Area }=\int_{0}^{\pi / 4} \frac{1}{\cos ^{2} x} \mathrm{~d} x .$	B1 M1 A1 [3]	correct integral and limits (soi) $[\tan x] \text { or }\left[\frac{\sin x}{\cos x}\right]$	condone no $\mathrm{d} x$; limits can be implied from subsequent work unsupported scores M0
$\begin{array}{ll} \text { (iii) } & \mathrm{f}(0)=1 / \cos ^{2}(0)=1 \\ & \mathrm{~g}(x)=1 / 2 \cos ^{2}(x+\pi / 4) \\ \mathrm{g}(0)=1 / 2 \cos ^{2}(\pi / 4)=1 \\ (\Rightarrow \quad & \mathrm{f} \text { and } \mathrm{g} \text { meet at }(0,1)) \end{array}$	B1 M1 A1 [3]	must show evidence	$\begin{aligned} & \text { or } \mathrm{f}(\pi / 4)=1 / \cos ^{2}(\pi / 4)=2 \\ & \text { so } \mathrm{g}(0)=1 / 2 \mathrm{f}(\pi / 4)=1 \end{aligned}$
(iv) Translation in x-direction through $-\pi / 4$ Stretch in y-direction scale factor $1 / 2$	M1 A1 M1 A1 B1ft B1ft B1 B1dep [8]	must be in x-direction, or $\binom{-\pi / 4}{0}$ must be in y-direction asymptotes correct min point ($-\pi / 4,1 / 2$) curves intersect on y-axis correct curve, dep B3, with asymptote lines indicated and correct, and TP in correct position	'shift' or 'move' for 'translation' M1 A0; $\binom{-\pi / 4}{0}$ alone SC1 'contract' or 'compress' or 'squeeze’ for 'stretch' M1A0; ‘enlarge' M0 stated or on graph; condone no $x=\ldots$, ft $\pi / 4$ to right only (viz. $-\pi / 4,3 \pi / 4$) stated or on graph; ft $\pi / 4$ to right only (viz. $(\pi / 4,1 / 2)$) ' y-values halved', or ' x-values reduced by $\pi / 4$, are M0 (not geometric transformations), but for M1 condone mention of x - and y-values provided transformation words are used.
(v) Same as area in (ii), but stretched by s.f. $1 / 2$. So area $=1 / 2$.	$\begin{aligned} & \text { B1ft } \\ & \text { [1] } \end{aligned}$	$1 / 2$ area in (ii)	or $\int_{-\pi / 4}^{0} \mathrm{~g}(x) \mathrm{d} x=\frac{1}{2} \int_{-\pi / 4}^{0} \frac{1}{\cos ^{2}(x+\pi / 4)} \mathrm{d} x=\frac{1}{2}\left[\tan (x+\pi / 4]_{-\pi / 4}^{0}=1 / 2\right.$ allow unsupported

6 (i) $5=k / 100 \Rightarrow k=500 *$	$\begin{aligned} & \text { E1 } \\ & \text { [1] } \end{aligned}$	NB answer given
(ii) $\frac{d P}{d V}=-500 V^{-2}=-\frac{500}{V^{2}}$	M1 A1 [2]	$\begin{aligned} & (-1) V^{-2} \\ & \text { o.e. }- \text { allow }-k / V^{2} \end{aligned}$
(iii) $\frac{d P}{d t}=\frac{d P}{d V} \cdot \frac{d V}{d t}$ $\begin{aligned} & \text { When } V=100, \mathrm{~d} P / d V=-500 / 10000= \\ & -0.05 \\ & \qquad \quad \mathrm{~d} V / \mathrm{d} t=10 \\ & \Rightarrow \quad \mathrm{~d} P / \mathrm{d} t=-0.05 \times 10=-0.5 \\ & \text { So } P \text { is decreasing at } 0.5 \mathrm{Atm} / \mathrm{s} \end{aligned}$	M1 B1ft B1 A1 [4]	chain rule (any correct version) $\begin{aligned} & \text { (soi) } \\ & \text { (soi) } \\ & -0.5 \mathrm{ca} \end{aligned}$

7 (i) $\frac{d V}{d t}=2$
(ii) $\tan 30=1 / \sqrt{ } 3$

$$
=r / h
$$

$\Rightarrow \quad h=\sqrt{ } 3 r$
$\Rightarrow \quad V=\frac{1}{3} \pi r^{2} \cdot \sqrt{3} r=\frac{\sqrt{3}}{3} \pi r^{3}$ *

$$
\frac{d V}{d r}=\sqrt{3} \pi r^{2}
$$

(iii) When $r=2, \mathrm{~d} V / \mathrm{d} r=4 \sqrt{ } 3 \pi$
$\frac{d V}{d t}=\frac{d V}{d r} \cdot \frac{d r}{d t}$
$\Rightarrow \quad 2=4 \sqrt{ } 3 \pi \mathrm{~d} r / \mathrm{d} t$
$\Rightarrow \mathrm{dr} / \mathrm{d} t=1 /(2 \sqrt{ } 3 \pi)$
or $0.092 \mathrm{~cm} \mathrm{~s}^{-1}$

B1
or $\frac{d r}{d t}=\frac{d r}{d V} \cdot \frac{d V}{d t}$ substituting 2 for $\mathrm{d} V / \mathrm{d} t$ and $r=2$ into their $d V / d r$

$$
\begin{array}{ll}
\text { 8(i) } \quad & V=\pi h^{2}-\frac{1}{3} \pi h^{3} \\
\Rightarrow & \frac{d V}{d h}=2 \pi h-\pi h^{2}
\end{array}
$$

(ii) $\frac{d V}{d t}=0.02$
$\frac{d V}{d t}=\frac{d V}{d h} \cdot \frac{d h}{d t}$
$\Rightarrow \frac{d h}{d t}=\frac{0.02}{d V / d h}=\frac{0.02}{2 \pi h-\pi h^{2}}$
When $h=0.4, \Rightarrow \frac{d h}{d t}=\frac{0.02}{0.8 \pi-0.16 \pi}=0.0099 \mathrm{~m} / \mathrm{min}$

M1
A1
B1
M1

M1dep

A1cao
[6]
expanding brackets (correctly) or product rule
oe
soi
$\frac{d V}{d t}=\frac{d V}{d h} \cdot \frac{d h}{d t}$ oe
substituting $h=0.4$ into their $\frac{d V}{d h}$ and $\frac{d V}{d t}=0.02$
0.01 or better or $1 / 32 \pi$

